
Python beadandó feladat 1
ELTE IK PNYFT - 2025

REST API készítése FastAPI alapokon
Az API egy webbolt felhasználóinak a kezelését teszi lehetővé. Tartalmazza a
felhasználók bolthoz rendelését, a kosár hozzáadását egy adott vásárlóhoz, valamint a
vásárló kosarába tudunk helyezni termékeket a végpontok segítségével. A behelyezett
termékeket lehet módosítani, vagy törölni. A megvásárolt termékek összeértékét, vagyis
a fizetendő összeget is le lehet kérdezni egy adott vásárló kosarában található termékek
árai alapján. Az API lehetőséget biztosít egy adott vásárló adatainak a lekérdezésére, az
összes vásárló megjelenítésére, vagy egy adott vásárlói kosár tartalmának a
megjelenítésére.

Az API ezekkel a funkciókkal segítségünkre lehet egy webbolt elkészítéséhez, de a
felhasználói felületet nem tartalmazza. Az adatokat egy data.json nevű fájlban tárolja.

A feladat, amit meg kell oldanunk, egy FastAPI implementációjának a kiegészítése. A kód
egy része már meg van írva a mellékelt könyvtárakban. Az előre elkészített fájlokban
instrukciók vannak az adott modul funkcióinak a megírásához és véglegesítéséhez.

A mellékelt fájlok tartalma

A data.json a JSON az adatok tárolására szolgál. Ebben elhelyeztünk néhány teszt
adatot, amelyeket fel lehet használni az alkalmazás kipróbálásához.

Python beadandó feladat 1 1

A filehandler.py és a filereader.py a JSON adatok fájlból történő beolvasására és
fájlba írására használható. A függvényeket ki kell egészíteni ahhoz, hogy képesek
legyenek JSON adatokat írni és olvasni.

A routes.py tartalmazza az alkalmazás végpontjait. Ezeket a függvényeket kell
kiegészíteni a megfelelő funkciókkal.

A schemas.py a JSON adatok kliens és szerver közötti mozgatásához, valamint a
JSON adatok kezelésére alkalmas osztályokat tartalmazza. Ezeket az osztályokat ki
kell egészíteni a megfelelő mezőkkel a JOSN adatok alapján. Ügyelni kell az adatok
helyességére is a fájlban leírtak alapján.

A main.py tartalmazza a FastAPI main modulját, amelyet futtatni kell az alkalmazás
elindításához a uvicorn python csomag segítségével.

Feladatok
Indítsuk el a REST API-t és nézzük meg az endpointok listáját a FastAPI
általautomatikusan generált UI felületén. Az API elindításakor a rendszer generálni fog
egy URL-t és egy portot rendel a futó programhoz. Ennek az URL-nek a kiegészítésével
elérjük az alkalmazás /doc endpointjával a webes felületet.
uvicorn mainfileneve:appneve --reload

(5 pont)

Az alábbi képernyőt kell látnunk a webböngészőben:

Az adduser segítségével egy felhasználót tudunk hozzáadni a webshophoz. (5 pont)

Az itt látható végpontokat kell elkészítenünk.

Python beadandó feladat 1 2

Az addshoppingbag egy kosarat rendel egy felhasználóhoz. (5 pont)

Az additem egy terméket ad az adott felhasználó kosarához. (5 pont)

Az updateitem módosítja az adott termék attribútumait egy felhasználó kosarában.
(10 pont)

A deleteitem töröl egy terméket a kosárból. (5 pont)

A user egy adott felhasználó adatait adja vissza. (5 pont)

A users visszaadja az összes felhasználót. (5 pont)

A shoppingbag egy kosárban található összes termék adatait adja vissza. (5 pont)

A getusertotal egy vásárló kosarában található termékek értékét adja vissza. (10
pont)

A Route az üzlet nevét adja vissza. Ez a funkció már implementálva van a main.py
fájlban

Az alkalmazás webes felületén (/docs) a fenti feladatokat el lehet végezni. Minden egyes
funkció a router fájlban leírt módon viselkedik, és az ott meghatározott adatokat adja
vissza Szabványos JSON formátumban, a JSONResponse függvénnyel, státus kóddal
együtt.

A végpontok megírása során az alábbi szabályokat kell betartani (20 pont):

Minden végpontnál adjuk meg a response_modell értékét (típus).

Ügyeljünk a típusok megadására a függvényekben is.

A függvények visszatérési értéke JSONResponse() legyen

Minden függvény tartalmazzon hibakezelést, hiba esetén dobjon egy
HTTPException-t és a megfelelő status code-ot.

A függvények a JSON adatok mentéséhez és visszaolvasásához a filehandler.py és
a filereader.py fájlt használják. Tegyük elérhetővé ezeket az alkalmazásban! Az
adatokat a data.json fájlba kell menteni.

A HTTP válaszok minden esetben tartalmazzák a megfelelő status code-ot, pl 404 -
Not found, vagy 200 – OK.

Az alkalmazás használata
A main.py fájl a REST API main modulja indítja el. A futtatásához telepíteni kell a pip
csomagkezelővel a uvicorn és a fastapi csomagokat:
pip install uvicorn, fastapi

vagy

Python beadandó feladat 1 3

pip3 install uvicorn, fastapi

Ezután az alkalmazás a következő paranccsal futtatható a terminálban:
uvicorn main:app --reload --port 9000

A port nem kötelező opció.

A futó alkalmazás a következő URL-en érhető el:
127.0.0.1:9000

A webes UI pedig az alábbi URL használatával:
127.0.0.1:9000/docs

A dokumentáció pedig itt:
127.0.0.1:9000/redoc

Az adatok kezelésére használható osztályokat a megadott schema alapján ki kell
dolgozni. A schema.py tartalmazza azok küldésére és fogadására készített osztályokat.
Az osztályokban az adatok legyenek validálva! (10 pont)

Az int adatok nem lehetnek negatívak.

Az email mező csak e-mail formátumot fogadhat el.

Hiba esetén ValueErrort kell dobni és lehetőség szerint a kliens oldalon is jelezni kell
a hibát.

A fájlkezelők implementálása
A data.json fájlban található adatok kezelésére két Python modult készítettünk. Az egyik,
a filehandler.py, ami a fájlok írására használható függvényeket, a másik a filereader.py,
ami a JSON adatok olvasására készült függvényeket tartalmaz. A függvények törzse
nincs implementálva, ezért a beadandó elkészítéséhez ezeket a függvényeket is
implementálni kell az alábbi leírás alapján:

(10 pont)

filehandler.py
Új felhasználó hozzáadása:

new_user = {
"id": 4, # Egyedi felhasználó azonosító
"name": "Szilvás Szabolcs",
"email": "szabolcs@plumworld.com"
}

Felhasználó hozzáadása a JSON fájlhoz:

Python beadandó feladat 1 4

add_user(new_user)

Hozzáadunk egy új kosarat egy meglévő felhasználóhoz:

new_basket = {
"id": 104, # Egyedi kosár azonosító
"user_id": 2, # Az a felhasználó, akihez a kosár tartozik
"items": [] # Kezdetben üres kosár
}

add_basket(new_basket)

Új termék hozzáadása egy felhasználó kosarához:

user_id = 2
new_item = {
"item_id": 205,
"name": "Szilva",
"brand": "Stanley",
"price": 7.99,
"quantity": 3
}

Termék hozzáadása a kosárhoz:

add_item_to_basket(user_id, new_item)

Hogyan használjuk a fájlt? Importáljuk a függvényeket a filehandler.py modulból:

from filehandler import (
add_user,
add_basket,
add_item_to_basket,
)

A JSON fájl elérési útja

JSON_FILE_PATH = ""
def load_json() -> Dict[str, Any]:

with open(JSON_FILE_PATH, "r", encoding="utf-8") as file:
pass

Python beadandó feladat 1 5

def save_json(data: Dict[str, Any]) -> None:
pass

def add_user(user: Dict[str, Any]) -> None:
pass

def add_basket(basket: Dict[str, Any]) -> None:
pass

def add_item_to_basket(user_id: int, item: Dict[str, Any]) -> None:
pass

filereadr.py
Felhasználó adatainak lekérdezése:

user_id = 1
user = get_user_by_id(user_id)

Felhasználó kosarának tartalmának lekérdezése:

user_id = 1
basket = get_basket_by_user_id(user_id)

Összes felhasználó lekérdezése:

users = get_all_users()

Felhasználó kosarában lévő termékek összárának lekérdezése:

user_id = 1
total_price = get_total_price_of_basket(user_id)

Hogyan futtassuk a fájlt? Importájuk a függvényeket a filehandler.py modulból:

from filereader import (
get_user_by_id,
get_basket_by_user_id,
get_all_users,
get_total_price_of_basket
)

Python beadandó feladat 1 6

A JSON fájl elérési útja

JSON_FILE_PATH = ""
def load_json() -> Dict[str, Any]:

pass

def get_user_by_id(user_id: int) -> Dict[str, Any]:
pass

def get_basket_by_user_id(user_id: int) -> List[Dict[str, Any]]:
pass

def get_all_users() -> List[Dict[str, Any]]:
pass

def get_total_price_of_basket(user_id: int) -> float:
pass

A végpontok implementációja
Az alábbi végpontokat kell kidolgozni:

Felhasználó hozzáadása a bolthoz. A bemenet egy User típus, a visszatérési érték a
felvitt felhasználó rekordja.

@routers.post('/adduser', response_model=User)
def adduser(user: User) -> User:

pass

Kosár hozzáadása egy User-hez. A bemenő paraméter a felhasználó azonosítója, a
visszatérési érték a következő szöveg: „Sikeres kosár hozzárendelés.”

@routers.post('/addshoppingbag')
def addshoppingbag(userid: int) -> str:

pass

Termék berakása a felhasználó kosarába. A bemenő paraméterek a felhasználó
azonosítója és a termék. A visszatérési érték a kosár tartalma.

@routers.post('/additem', response_model=Basket)
def additem(userid: int, item: Item) -> Basket:

Python beadandó feladat 1 7

pass

Egy adott termék attribútumainak módosítása. A bemenő paraméter a felhasználó
azonosítója, valamint a termék azonosítója és új attribútumai. Termék cserével is
megoldható a feladat. A visszatérési érték a kosár tartalma.

@routers.put('/updateitem')
def updateitem(userid: id, itemid: int, updateItem: Item) -> Basket:

pass

Egy termék törlése az adott felhasználó kosarából. A bemenő paraméterek a felhasználó
azonosítója, valamint a termék azonosítója. A visszatérési érték a kosár tartalma.

@routers.delete('/deleteitem')
def deleteitem(userid: int, itemid: int) -> Basket:

pass

Egy adott felhasználó adatainak a megjelenítése. A bemenő paraméter a felhasználó
azonosítója, a visszatérési érték a felhasználó rekordja.

@routers.get('/user')
def user(userid: int) -> User:

pass

Az összes felhasználó lekérdezése az adatbázisból. Nincs bemenő paraméter és a
kosarak nem kerülnek megjelenítésre. A visszatérési érték a felhasználók listája.

@routers.get('/users')
def users() -> list[User]:

pass

Egy adott felhasználó kosarának megjelenítése. A paramétere a felhasználó azonosítója.
A visszatérési érték a termékek.

@routers.get('/shoppingbag')
def shoppinbag(userid: int) -> list[Item]:

pass

Egy adott felhasználó kosarában lévő termékek értékét adja vissza. A bemenő
paramétere a felhasználó azonosítója, a visszatérési érték az összeg.

@routers.get('/getusertotal')
def getusertotal(userid: int) -> float:

Python beadandó feladat 1 8

pass

Kérdés esetén a gyakorlatvezetőhöz, vagy az előadás vezetőjéhez lehet fordulni.

A feladat értékeléséhez minden végpontnak működnie kell. A pontszám a megvalósítás
minőségétől is függ, vagyis, ha egy végpont működik, de a megadott feltételeknek nem
felel meg, akkor kevesebb pontot ér.

Az elérhető maximális pontszám: 100 pont

Jó munkát!

Python beadandó feladat 1 9

